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Despite important advances in prevention, cardiac arrest (CA) is still a leading cause
of death in many parts of the world. The principles of cardiopulmonary resuscitation
(CPR) have remained fundamentally unchanged during the past 40 years. Successful
resuscitation is strongly associated with several specific interventions, including early
bystander CPR,1,2 earlier defibrillation, high quality of chest compressions,3,4 and
immediate postresuscitation care.5

Ventricular fibrillation (VF), which is characterized as rapid, disorganized contrac-
tions of the heart with complex electrocardiogram (ECG) patterns, remains the
primary rhythm in many instances of CA. The only reliable method of treating VF is
electrical defibrillation, which was first used in humans in 1947.6 For every minute that
passes between collapse and defibrillation, survival rates from witnessed VF decrease
7% to 10% if no CPR is provided. Even though earlier defibrillation during CPR is
greatly emphasized, it is increasingly clear that not all patients in VF benefit from being
treated in the same manner, as the duration of VF is a major determinant of
countershock outcome.7 If defibrillation is undertaken when the myocardial metabolic
state is compromised, success rates are lower.8,9 Repetitive high-energy defibrillation
can also damage the already precarious myocardium.9–11 For these reasons, the
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ability to gain information concerning the metabolic state of the myocardium and to
optimize the timing of defibrillation would be of enormous benefit in allowing therapy
to be tailored to an individual heart.

IMPORTANCE OF OPTIMIZING THE TIMING OF DEFIBRILLATION

The major determinant of successful defibrillation is the duration of VF. There is
evidence that when the interval between the onset of VF and the delivery of the first
shock is less than 5 minutes, an immediate electrical shock may be successful.12

However, both animal and human studies demonstrate that when the duration of
untreated VF exceeds 5 minutes, initial CPR with chest compression before delivery
of a defibrillation attempt improves the likelihood of restoration of spontaneous
circulation (ROSC).13,14 However, the duration of collapse may be difficult to access,
especially in out-of-hospital patients. Analysis of the VF waveform may provide a
measure of VF duration. However, more direct prognostic information that could be
used to determine whether a patient should receive immediate attempted defibrilla-
tion or alternate therapy such as CPR or medications would be advantageous.

The evidence is clear that the quality of chest compressions is another major
determinant of successful resuscitation. Successful shocks are associated with
shorter preshock pause duration and higher mean chest compression depth in the 30
seconds preceding the preshock pause.15 Established predictors of good-quality
CPR therefore may be used to optimize the timing of defibrillation by predicting the
success of defibrillation and thereby successful resuscitation.

On the other hand, more than 50% of patients initially resuscitated from CA
subsequently die before leaving the hospital, and the majority of these deaths are due
to impaired myocardial function.16–18 The severity of postresuscitation myocardial
dysfunction has been recognized to be related, in part, to the magnitude of the total
electrical energy delivered with defibrillation.19 Increases in the defibrillation energy
are associated with decreased postresuscitation myocardial function.19,20 Optimizing
the timing of defibrillation therefore may decrease the severity of postresuscitation
myocardial dysfunction by reducing the numbers of failed or unnecessary shocks.

The development of a noninvasive and real-time monitoring during CPR that
provides substantial information to the rescuers and allows for optimizing the timing
of defibrillation is of great importance to prioritize interventions, chest compression or
defibrillation, to minimize the interruption in CPR, to reduce the number of failed
defibrillation attempts, and ultimately improve the final outcome.

OPTIMIZING THE TIMING OF DEFIBRILLATION

The optimal timing of defibrillation is determined by evaluating the probability of shock
outcomes. If the attempted shock has a high likelihood of defibrillation success, an
electrical shock should be prompted and delivered. Otherwise, unnecessary shocks
should be avoided and alternate therapy such as CPR or medications, especially
high-quality chest compression, should be utilized. For the purpose of optimizing the
timing of defibrillation, invasive hemodynamic measurements, especially coronary
perfusion pressure (CPP)21 and end-tidal CO2 (EtCO2), are employed.22

Experimentally, in a porcine model of CA and CPR, CPP and EtCO2 above the
threshold level of 15 mm Hg have been the only predictors of successful resuscitation,
other than the priority interventions of chest compression or defibrillation.22,23

Although the importance of CPP during CPR is clear, invasive measurements,
including aortic and right atrial pressures, are available or feasible at the time of
resuscitation in only a very small minority of patients in critical care settings. The use
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of EtCO2 measurements is also not widely available, especially because of the need
for endotracheal intubation.

Consideration, with the intent to identify a better predictor of defibrillation and
ROSC, has therefore been focused on the analyses of electrocardiographic features
of VF waveforms, which is routinely available in the current automated external
defibrillators (AEDs).24,25 The ECG recorded from the surface of the body represents
the superposition of all of the electrical fields generated by each volume element of
the heart.26 Presumably, organization of the surface ECG has some relationship to the
underlying organization of the myocardial electrical activity. VF waveforms change
with time and exhibit predictable changes over time during CA and CPR (Fig. 1). VF
waveform analysis therefore can be used to predict the probability of shock outcome,
monitor the effectiveness of chest compression, optimize the timing of defibrillation,
and ultimately guide CPR interventions.

OPTIMIZING THE TIMING OF DEFIBRILLATION BY VF WAVEFORM ANALYSIS

The search for defibrillation prediction features gained from VF waveforms dates back
20 years, and recently published review articles24,26 provide excellent overviews of
various techniques developed for VF waveform analysis and the resulting information

Fig. 1. ECG waveform recorded during untreated VF in a porcine model of cardiac arrest. (A)
0 minute of VF. (B) 5 minutes of VF. (C) 10 minutes of VF and CPR. (D) 12 minutes of VF. (E) 15
minutes of VF. CPR was initiated from 10 minutes of VF and lasted for 5 minutes.
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obtained. Approaches for optimizing timing of defibrillation include measures based
on time domain methods; frequency domain methods, including wavelet-based
transformation; nonlinear dynamics methods; and a combination of these methods.
Fig. 2 provides an example of some quantitative measures calculated from the ECG
waveforms during untreated VF and CPR.

Time Domain Methods

Earlier investigations using ECG analysis focused on amplitude or voltage of the VF
waveform as a predictor of the likelihood of successful defibrillation because this ECG
feature reflected myocardial blood flow and energy metabolism.8,27,28 It has been
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Fig. 2. RMS, median frequency, dominant frequency, and AMSA during untreated VF and
CPR in a porcine model of cardiac arrest. CPR was initiated from 10 minutes of VF and lasted
for 5 minutes.
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observed that VF amplitude declines over time, and greater amplitudes, especially
after an interval of CPR, are associated with correspondingly greater success of
defibrillation.8,29–33

Peak-to-peak amplitude, which is defined as the maximum peak-to-peak VF
amplitude in a given time window of the ECG signal, is associated with favorable
resuscitation outcomes in out-of-hospital CA. Based on the study of Weaver and
colleagues,8 the amplitude of the initial VF waveform was greatest in subjects with
witnessed collapse and with shorter intervals from collapse to CPR or from collapse
to rescue shock. VF amplitude greater than 0.2 mV is recognized as a predictor of
significantly greater likelihood of resuscitation. For subjects with VF amplitude of
lower than 0.2 mV, rescue shocks more often result in asystole rather than organized
rhythms, and these subjects rarely survive to be admitted to the hospital or
discharged alive from the hospital. Survival to discharge increases with amplitude of
0.3 to 0.4 mV and is best for a VF of 0.5 mV or greater.31,32

Root-mean-squared (RMS) amplitude is defined as the square root of the mean of
the squares of the summed VF amplitude. Initial RMS amplitude of VF is also
associated with shock success, ROSC, and discharge from hospital in out-of-hospital
CA patients.34

Mean and median slope of the ECG waveform, which is defined as the mean and
median of the slope of the VF waveform, is also used to predict the defibrillation
success and ROSC. Gundersen and colleagues33 showed that mean probability of
ROSC decreases steadily for cases at all initial levels. Regardless of initial level there
is a relative decrease in the probability of ROSC of about 23% from 3 to 27 seconds
into such a pause by calculating the mean slope using a 2-second window from ECG.
Neurauter and coworkers35 reported a highest area of 0.86 under the receiver
operating curve (ROC) by the median slope in the interval 10 to 22 Hz, resulting in a
sensitivity of 95% and a specificity of 50% from 197 patients with in-hospital and
out-of-hospital CA.

Frequency Domain Methods

Techniques to quantify the component frequencies of the VF signal have employed
Fourier and wavelet transformation. Frequency domain features resulting from fast
Fourier transform (FFT) analysis of the VF signal include dominant frequency, median
frequency, fibrillation power, instantaneous mean frequency, frequency ratio, and
amplitude spectrum analysis (AMSA), all of which have been shown to be capable of
predicting countershock success.

Dominant frequency, which is defined as the highest power in the VF spectrum, is
associated with defibrillation success, ROSC, and survival to hospital discharge in
out-of-hospital CA patients.36–38 Median frequency, which is calculated as the mean
of all of the contributing frequencies weighted by the power at each frequency, also
serves as a predictor of the success of electrical defibrillation.29,39 Experimentally, a
median frequency of more than 9.14 Hz has 100% sensitivity and 92% specificity in
predicting the success of defibrillation.29,40 Median frequency also correlates with
CPPs in animal models as well as human patients and therefore becomes the
preferred ECG feature to be used as a predictor of outcome.27,36,40,41 Other recent
investigations have confirmed that there is a relationship between median frequency,
dominant frequency, and ROSC after rescue shocks.42–44

A refinement of spectrum analysis termed amplitude spectrum analysis (AMSA),
calculated as the sum of contributing frequencies weighted by the absolute values of
the Fourier transform of the VF signal, has also proved its validity as a predictor for
defibrillation outcomes and monitoring the effectiveness of chest compression in
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animal studies and the clinical scenario.25,45–47 Retrospective analysis of human ECG
records, representing lead 2 equivalent recordings, confirmed the efficacy of this tool
in predicting the likelihood that any one electrical shock would have restored a
perfusing rhythm during CPR. AMSA values were significantly greater in successful
defibrillation, compared to unsuccessful defibrillation. A threshold value of AMSA of
12 mVHz was able to predict the success of each defibrillation attempt with sensitivity
and specificity of more than 91% in out-of-hospital CA patients.48

Hamprecht and colleagues proposed that fibrillation power is an alternative
method of ECG spectral analysis.49 Defined as the contribution of VF to the power
spectral density that eliminated the spectral contribution of artifacts from chest
compression, fibrillation power was used to predict the countershock success and
matched the established frequency and amplitude analysis both in animal and
clinical studies.36,49

Sherman50 proposed a measurement termed frequency ratio, which is defined as
the ratio of the power in the high-frequency band from 8 to 24 Hz compared to the
power in the low-frequency band from 3 to 5 Hz. Frequency ratio was used to
estimate VF duration in an animal study and the results showed that frequency ratio
is an improved frequency-based measure of VF duration, with an ROC area of 0.91 at
5 minutes and 0.95 at 7 minutes of VF duration.

Recently, a joint time-frequency approach cited that instantaneous mean fre-
quency (IMF) was used to interpret VF episodes in 204 segments obtained from 13
isolated human hearts. The results suggested that there were significant changes in
the spatiotemporal evolution of the frequency. However, IMF has not been evaluated
to predict defibrillation outcomes.51

Wavelet transform-based time-frequency methods provided a more accurate
prediction of rescue shock success in human CA. Energy of the wavelet spectra
achieved a sensitivity of 91% and a specificity of 52% for predicting ROSC in the
out-of-hospital AED recordings.52 In another animal experiment, wavelet transform
based methodology achieved an overall accuracy of 94% in successfully predicting
shock outcomes.53

Nonlinear Methods

VF is confirmed to be a complex nonlinear pattern formed by drifting spiral waves of
electrical activity that travel across the myocardium and subsequently break
down.54,55 Early debates about whether this chaotic nature can be measured56,57

have largely settled in favor of some chaotic features for VF.56,58,59 Analyses of the
Hurst exponents and self-similarity dimensions correlate with the duration of VF,
which have favored clinical applications.56 Increased organization in the VF signal is
associated with a greater likelihood of shock success. In AED recordings from 75
patients with out-of-hospital CA, the scaling exponent (ScE), which is an estimate of
the fractal dimension, was associated with an increased probability of shock success,
ROSC, and hospital discharge.34 Subsequently, several new approaches have been
proposed and their effectiveness proved in predicting defibrillation outcomes. One of
these animal studies employed N(�) histograms analysis, which was demonstrated to
be superior to mean VF frequency analysis.59

Angular velocity (AV) is the angle by which an object turns in a certain time.
Sherman and colleagues60 measured the velocity of rotation of the position vector
over time by constructing a flat, circular disk-shaped structure in a three-dimensional
phase space. Using ScE and AV estimated probability density, VF of less than a
5-minute duration can be identified with 90% sensitivity on the basis of a single
5-second recording of the ECG waveform.
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Methods employing entropy measures have also been shown to provide more
optimal prediction of ROSC after electrical shock in human VF recordings.52 Lever
and coworkers61 examined the degree of organization of VF that was induced by
electrical stimulation as opposed to occurring clinically due to ischemia or scarring
from electrograms recorded by implanted cardiac defibrillators. Using autocorrela-
tion, Shannon entropy, and Kolmogorov entropy, the study confirmed that induced VF
had a greater organization than in spontaneous episodes. However, the clinical
significance and utility of differences in VF waveform regularity is still unclear.

The logarithm of the absolute correlations (LAC) is a measure based on the
roughness of VF waveform. LAC was assessed and compared with the previously
published ScE on the ability to predict the duration of VF and the likelihood of ROSC
under both experimental and clinical conditions.62 In a clinical study, the LAC
measure was a better predictor of ROSC following initial defibrillation, as reflected by
the area under ROC of 0.77 for LAC, compared to 0.57 for ScE.

Detrended fluctuation analysis (DFA), which determines the statistical self-
affinity of the VF waveform, is applied to characterize the raw ECG waveform at
very short time scales during episodes of cardiac arrhythmias, with the aim to
obtain global insight into its dynamic behavior in patients experiencing sudden
death.63 DFA demonstrated a significant difference between patients with suc-
cessful and unsuccessful defibrillation in a clinical trial that included 155 out-of-
hospital CA patients.64

Other Methods

Combinations of measurements based on frequency, amplitude, or nonlinear meth-
ods may be more predictive of VF outcome than single measurements. For example,
a linear combination of amplitude and frequency more accurately predicts ROSC and
hospital discharge than either measurement alone.32 Greater overall accuracy for
predicting ROSC in 84 cases of human VF was demonstrated with a combination of
total amplitude, peak-to-peak amplitude, proportion of total power in the 2-Hz to 7-Hz
range, frequency leakage, and slope of the signal when shocks were applied.65 In
out-of-hospital settings, Eftestøl and colleagues42,44 analyzed the ability of a linear
combination of four spectral features—power, median frequency, spectral flatness,
and dominant frequency—recorded by AEDs, from 883 rescue shock attempts on
156 patients.

Neural networks were used by Neurauter and coworkers for single-feature combi-
nations to optimize the prediction of countershock success from 197 patients with
in-hospital and out-of-hospital CA.35 Using frequency band segmentation of human
VF ECGs, several single predictive features with high area under ROC (�0.840) were
identified. However, combining these single predictive features using neural networks
did not further improve outcome prediction in human VF data.

A recent study used genetic programming to fit a relationship between multiple
derived measures and defibrillation shock success.66 It indicated that an optimal
algorithm included amplitude, frequency, and nonlinear statistics. This algorithm has
not been prospectively tested, however.

LIMITATIONS

Although VF waveform analysis provides satisfactory and encouraging results for
optimizing the timing of defibrillation in both animal and clinical studies, considerable
concerns still limit implementing currently available methods into clinical devices.

The first limitation involves the use of waveform analysis methods. Concerns
preventing the widespread use of VF amplitude as a resuscitation guide include the

205Optimizing the Timing of Defibrillation

Esta mensagem, incluindo os seus anexos, contém informações confidenciais destinadas a indivíduo e propósito específicos, e é protegida por lei. 
É proibida a utilização, acesso, cópia ou divulgação não autorizada das informações presentes nesta mensagem.  
 
The information contained in this communication is confidential, is law protected, and is intended only for business use of the addressee.  
It's forbidden the unauthorized use, access, copy or disclose of the information contained in this communication.  
 
 



COPYRIG
HT

fact that recording conditions, movement artifact, recording devices, body habitus,
and electrode placement may alter measured VF amplitude,67 even though frequency
analysis to assess the VF waveform overcomes some of the problems encountered
with amplitude analysis. For example, the technique is robust and less affected by
external factors. The power spectra obtained by frequency analysis are similar in
simultaneous surface and endocardial ECG leads. Many of the calculations can be
performed despite ambient electrical noise or artifact from chest compressions,43

although the best analyses are still conducted during pauses in chest compressions.
There are, however, fundamental problems with FFT analysis. The technique is
suitable only for analysis of stationary signals where the waveform does not change.
Given the physiologic deterioration in the myocardium during CA, this assumption
cannot be extended for VF. The major limitations of the nonlinear methods include the
fact that these measurements are numerically intensive to calculate and that they tend
to be very sensitive to filtering and noise. As a consequence, these measurements
have not been easily incorporated into the present generation of clinical monitors.

The second limitation is that acute ischemic heart disease, such as is present in
acute myocardial infarction (AMI) alters VF waveform features.68 Olasveengen and
colleagues69 demonstrated that AMI patients have a depressed median slope and
AMSA compared to patients without AMI during CA. Lever and colleagues61 con-
firmed that electrically induced VF had a greater organization than that occurring
spontaneously with ischemia. In addition, cardiomyopathy, autonomic dysfunction,
and differences in drug therapy make it probable that VF waveform analysis will never
demonstrate perfect predictive ability. Because different measurements extract
slightly different information from the VF waveform, it is likely that combinations of
these measurements will provide superior discriminative ability.32,65,66 Neurauter and
coworkers35 analyzed 770 ECG recordings of countershock parameters from 197
patients with CA. His study showed that a combination feature employing neural
networks does not further improve defibrillation prediction in comparison with the
best predictive single features. This result may indicate that an upper limit in outcome
prediction using VF waveform analysis in the time and frequency domain has already
been reached.

The third limitation is the small number of side-by-side comparisons of various
analytical measurements. It is possible that one measurement performs better than
another. Only a few papers present results from human data of direct comparisons
between various methods.8,26,34,50 Median frequency appears to be superior to
dominant frequency,29 and AMSA and multiple features of wavelet decomposition
appear to be superior to median frequency.52 Further, methods of filtered ECG
features from higher ECG sub-bands, instead of features derived from the main ECG
spectrum, have improved the accuracy of shock outcome prediction during CPR.70

Nonlinear measurements, such as ScE and FDA, are superior to time domain and
frequency-based methods.64 But these comparisons merit further validations with
large patient samples.

The final limitation is that all of the existing clinical research has a paucity of
prospective validation. Most of the studies have developed measurements by
retrospective analysis of electrocardiographic data, and only a few studies have
divided the data into training and test sets32,50 or examined measurements prospec-
tively.44,51 This lack of validation data and prospective study creates a valid risk of
overestimating the performance of each measurement for analyzing human VF.
Appropriate validation of each type of measurement will be important before adopting
any particular analysis for clinical use.71
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SUMMARY

There is evidence that features of VF waveforms change over time. Retrospective
animal and clinical studies suggest that it is possible to optimize the timing of
defibrillation by predicting the success of attempted defibrillation. Higher amplitude,
dominant, median and wavelet-based frequency, total fibrillation power and ampli-
tude spectrum area, and lower indices of randomness are all associated with
successful defibrillation. Combinations of these measurements may provide a greater
predictive power. However, there are still no devices available that are able to analyze
the VF waveform in real time and provide reliable information for optimizing the timing
of defibrillation. There are no current prospective studies that have identified the
optimal measurements for optimizing the timing of defibrillation to improve resusci-
tation outcome and long-term survival. Therefore, the value of VF waveform analysis
to guide defibrillation management is still under investigation.
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